Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 75(1): e880-e883, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1730658

ABSTRACT

Using an agent-based model, we examined the impact of community prevalence, the Delta variant, staff vaccination coverage, and booster vaccines for residents on outbreak dynamics in nursing homes. Increased staff coverage and high booster vaccine effectiveness leads to fewer infections, but cumulative incidence is highly dependent on community transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Nursing Homes , Vaccination
2.
Clin Infect Dis ; 74(4): 597-603, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1705201

ABSTRACT

BACKGROUND: Nursing home residents and staff were included in the first phase of coronavirus disease 2019 vaccination in the United States. Because the primary trial endpoint was vaccine efficacy (VE) against symptomatic disease, there are limited data on the extent to which vaccines protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the ability to infect others (infectiousness). Assumptions about VE against infection and infectiousness have implications for changes to infection prevention guidance for vaccinated populations, including testing strategies. METHODS: We use a stochastic agent-based Susceptible-Exposed-Infectious (Asymptomatic/Symptomatic)-Recovered model of a nursing home to simulate SARS-CoV-2 transmission. We model 3 scenarios, varying VE against infection, infectiousness, and symptoms, to understand the expected impact of vaccination in nursing homes, increasing staff vaccination coverage, and different screening testing strategies under each scenario. RESULTS: Increasing vaccination coverage in staff decreases total symptomatic cases in the nursing home (among staff and residents combined) in each VE scenario. In scenarios with 50% and 90% VE against infection and infectiousness, increasing staff coverage reduces symptomatic cases among residents. If vaccination only protects against symptoms, and asymptomatic cases remain infectious, increased staff coverage increases symptomatic cases among residents. However, this is outweighed by the reduction in symptomatic cases among staff. Higher frequency testing-more than once weekly-is needed to reduce total symptomatic cases if the vaccine has lower efficacy against infection and infectiousness, or only protects against symptoms. CONCLUSIONS: Encouraging staff vaccination is not only important for protecting staff, but might also reduce symptomatic cases in residents if a vaccine confers at least some protection against infection or infectiousness.


Subject(s)
COVID-19 , COVID-19/prevention & control , Humans , Nursing Homes , SARS-CoV-2 , Skilled Nursing Facilities , United States , Vaccination
3.
JAMA Netw Open ; 4(5): e2110071, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1227701

ABSTRACT

Importance: Nursing homes and other long-term care facilities have been disproportionately impacted by the COVID-19 pandemic. Strategies are urgently needed to reduce transmission in these high-risk populations. Objective: To evaluate COVID-19 transmission in nursing homes associated with contact-targeted interventions and testing. Design, Setting, and Participants: This decision analytical modeling study developed an agent-based susceptible-exposed-infectious (asymptomatic/symptomatic)-recovered model between July and September 2020 to examine SARS-CoV-2 transmission in nursing homes. Residents and staff of a simulated nursing home with 100 residents and 100 staff split among 3 shifts were modeled individually; residents were split into 2 cohorts based on COVID-19 diagnosis. Data were analyzed from September to October 2020. Exposures: In the resident cohorting intervention, residents who had recovered from COVID-19 were moved back from the COVID-19 (ie, infected with SARS-CoV-2) cohort to the non-COVID-19 (ie, susceptible and uninfected with SARS-CoV-2) cohort. In the immunity-based staffing intervention, staff who had recovered from COVID-19 were assumed to have protective immunity and were assigned to work in the non-COVID-19 cohort, while susceptible staff worked in the COVID-19 cohort and were assumed to have high levels of protection from personal protective equipment. These interventions aimed to reduce the fraction of people's contacts that were presumed susceptible (and therefore potentially infected) and replaced them with recovered (immune) contacts. A secondary aim of was to evaluate cumulative incidence of SARS-CoV-2 infections associated with 2 types of screening tests (ie, rapid antigen testing and polymerase chain reaction [PCR] testing) conducted with varying frequency. Main Outcomes and Measures: Estimated cumulative incidence proportion of SARS-CoV-2 infection after 3 months. Results: Among the simulated cohort of 100 residents and 100 staff members, frequency and type of testing were associated with smaller outbreaks than the cohorting and staffing interventions. The testing strategy associated with the greatest estimated reduction in infections was daily antigen testing, which reduced the mean cumulative incidence proportion by 49% in absence of contact-targeted interventions. Under all screening testing strategies, the resident cohorting intervention and the immunity-based staffing intervention were associated with reducing the final estimated size of the outbreak among residents, with the immunity-based staffing intervention reducing it more (eg, by 19% in the absence of testing) than the resident cohorting intervention (eg, by 8% in the absence of testing). The estimated reduction in transmission associated with these interventions among staff varied by testing strategy and community prevalence. Conclusions and Relevance: These findings suggest that increasing the frequency of screening testing of all residents and staff, or even staff alone, in nursing homes may reduce outbreaks in this high-risk setting. Immunity-based staffing may further reduce spread at little or no additional cost and becomes particularly important when daily testing is not feasible.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Homes for the Aged , Nursing Homes , Personnel Staffing and Scheduling/organization & administration , Adaptive Immunity , Aged , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Decision Support Techniques , Humans , Personal Protective Equipment , Viral Load , Vulnerable Populations
4.
Non-conventional in English | WHO COVID | ID: covidwho-276642

ABSTRACT

Wrong but Useful Mechanistic epidemiologic models are designed to help us systematically examine the implications of various assumptions about a highly nonlinear process that is hard to predict usi...

SELECTION OF CITATIONS
SEARCH DETAIL